МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

«УТВЕРЖДАЮ»

МЕТОД ЛЕЧЕНИЯ БОКОВОГО АМИОТРОФИЧЕСКОГО СКЛЕРОЗА С ИСПОЛЬЗОВАНИЕМ КЛЕТОЧНОЙ ТЕРАПИИ АУТОЛОГИЧНЫМИ МЕЗЕНХИМАЛЬНЫМИ СТВОЛОВЫМИ КЛЕТКАМИ

Инструкция по применению

Учреждения-разработчики:

Государственное учреждение «Республиканский научно-практический центр неврологии и нейрохирургии»

Государственное учреждение «Республиканский научно-практический центр трансфузиологии и медицинских биотехнологий»

Авторы:

д.м.н. профессор С.А. Лихачев, д.м.н. профессор М.П. Потапнев, к.м.н. Ю.Н. Рушкевич, к.м.н. Г.В. Забродец, к.м.н. С.М. Космачева, С.И. Игнатенко, Н.В. Гончарова, И.Н. Северин, Е.Н. Кабаева

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Первый заместитель министра
Д.Л. Пиневич
29.11.2013
Регистрационный № 152-1113

МЕТОД ЛЕЧЕНИЯ БОКОВОГО АМИОТРОФИЧЕСКОГО СКЛЕРОЗА С ИСПОЛЬЗОВАНИЕМ КЛЕТОЧНОЙ ТЕРАПИИ АУТОЛОГИЧНЫМИ МЕЗЕНХИМАЛЬНЫМИ СТВОЛОВЫМИ КЛЕТКАМИ

инструкция по применению

УЧРЕЖДЕНИЯ-РАЗРАБОТЧИКИ: ГУ «Республиканский научно-практический центр неврологии и нейрохирургии», ГУ «Республиканский научно-практический центр трансфузиологии и медицинских биотехнологий»

АВТОРЫ: д-р мед. наук, проф. С.А. Лихачев, д-р мед. наук, проф. М.П. Потапнев, канд. мед. наук Ю.Н. Рушкевич, канд. мед. наук Г.В. Забродец, канд. мед. наук С.М. Космачева, С.И. Игнатенко, Н.В. Гончарова, И.Н. Северин, Е.Н. Кабаева

Список сокращений

БАС — боковой амиотрофический склероз

ЖЕЛ — жизненная емкость легких

ЦНС — центральная нервная система

ЭНМГ — электронейромиография

МСК — мезенхимальные стволовые клетки

ППС — полная питательная среда

КОЕ-Ф — колониеобразующие единицы фибробластов

ЭДТА — этилендиаминтетраацетат

ПКМ — пунктат костного мозга

ЯСК — ядросодержащие клетки

ФСБ — фосфатно-солевой буферный раствор

МНК — мононуклеарные клетки

МРТ — магнитно-резонансная терапия

ИМТ — индекс массы тела

ПЦР — полимеразная цепная реакция

АВ(IV) — сыворотка АВ(IV) группы крови

FGFβ — фактор роста фибробластов

EGF — эпидермальный ростовой фактор

Настоящая инструкция по применению (далее — инструкция) разработана с целью повышения эффективности медицинской помощи пациентам с боковым амиотрофическим склерозом и предназначена для врачей-неврологов.

ПЕРЕЧЕНЬ НЕОБХОДИМОГО ОБОРУДОВАНИЯ, РЕАКТИВОВ, СРЕДСТВ, ИЗДЕЛИЙ МЕДИЦИНСКОЙ ТЕХНИКИ

- 1. Электромиограф и игольчатые электроды.
- 2. Спирометр.
- 3. Иглы для выполнения люмбальной пункции 18–22G.
- 4. Пункционный набор для получения костного мозга.
- 5. Катетер внутрисосудистый периферический 18G.
- 6. Дозатор шприцевой.
- 7. Термоконтейнер для перевозки биологического материала.
- 8. Шкаф с ламинарным потоком воздуха ІІ класса защиты.
- 9. Центрифуга с горизонтальным ротором для пробирок емкостью 15 и 50 мл (1500–3000 об./мин).
 - 10. CO₂-инкубатор (370°С, 5% CO₂).
 - 11. Микроскоп световой бинокулярный.
 - 12. Микроскоп инвертированный.
 - 13. Холодильник с морозильной камерой (+2-8°C; -20°C).
 - 14. Морозильник (-80°C).
 - 15. Счетчик для форменных элементов крови.
 - 16. Камера Горяева.
 - 17. Пипеттор для серологических пипеток.

- 18. Флаконы для культур клеток Т175.
- 19. Флаконы для культур клеток Т75.
- 20. Пипетки серологические однократного применения 1, 2, 5, 10 и 25 мл.
- 21. Пробирки центрифужные 50 мл однократного применения.
- 22. Пробирки центрифужные 15 мл однократного применения.
- 23. Криопробирки.
- 24. Микропробирки эппендорф.
- 25. Чашки для культур клеток (d = 100 мм).
- 26. Системы фильтрации (0,45; 0,2 мкм).

Перечень необходимых реагентов

- 27. Среда для культур клеток α-МЕМ с рибонуклеозидами и глутамаксом.
- 28. Фосфатно-солевой буфер Дульбекко без кальция и магния.
- 29. Трипсин-ЭДТА 0,25% раствор.
- 30. Сыворотка AB(IV), инактивированная 30 мин при 560°.
- 31. Нейроиндукционная среда: Среда Neurocult-XF proliferation medium и факторы роста FGFb, EGF либо Среда StemPro NSC SFM (набор; kit) и добавка к ней глутамакс (Ala-Gln 200 мМ раствор).
 - 32. Гистопак.
 - 33. Раствор гепарина 5000 ед/мл.
 - 34. Раствор натрия хлорида 0,9% для инфузий.
 - 35. Бензилпенициллина натриевая соль.
 - 36. Стрептомицина сульфат.
 - 37. 0,4% раствор трипанового синего с 0,1% азида натрия.
 - 38. Моноклональные антитела CD90, CD105, CD34, CD45.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

- 1. Боковой амиотрофический склероз (БАС).
- 2. Неуклонно прогрессирующее течение БАС.
- 3. Отсутствие эффекта от других видов терапии.
- 4. Возраст пациентов 18-65 лет.
- 5. Подписанное письменное информированное согласие на проведение клеточной терапии.

ПРОТИВОПОКАЗАНИЯ ДЛЯ ПРИМЕНЕНИЯ

- 1. Бульбарные и псевдобульбарные нарушения выраженной степени тяжести.
- 2. Умеренные и выраженные дыхательные нарушения (ЖЕЛ менее 60% при проведении спирометрии).
- 3. Психические заболевания, острая психотическая продуктивная симптоматика (психоз, галлюцинация, бред).
- 4. Депрессия, тревога, другие расстройства эмоциональной сферы любой степени выраженности.
- 5. Когнитивные нарушения умеренной и выраженной степени тяжести; другие заболевания ЦНС в стадии декомпенсации, эпилепсия.
 - 6. Тяжелые декомпенсированные или нестабильные соматические

заболевания (любые заболевания или состояния, которые угрожают жизни пациента или ухудшают прогноз).

- 7. Вирусные гепатиты В, С, ВИЧ.
- 8. Беременные или кормящие женщины.

ОПИСАНИЕ ТЕХНОЛОГИИ ИСПОЛЬЗОВАНИЯ МЕТОДА

Подтверждение диагноза БАС проводится на основе клиникоэлектронейромиографических данных по Эль-Эскориальским критериям (2000): наличие у пациента признаков сочетанного поражения центральных и периферических мотонейронов на трех уровнях из четырех возможных (ствол мозга, шейный, грудной и поясничный отделы спинного мозга), а также прогрессирующее течение заболевания, констатированное при динамическом наблюдении в течение 6 мес.

Проводят соматический и неврологический осмотры с определением индекса массы тела (ИМТ), общеклинические анализы: общий и биохимический общий анализ мочи, выполняют крови, электрокардиографию, рентгенографию органов грудной клетки (при отсутствии данных за последние 12 мес.), МРТ головного и спинного мозга (при отсутствии данных с момента развития клинической картины БАС), спирометрия (ЖЕЛ), анализ крови на гепатита С и вируса наличие маркеров вируса гепатита В, вируса иммунодефицита человека.

Трансплантацию мезенхимальных стволовых клеток (МСК) не проводят пациентам, серопозитивным по анти-ВГС, HBsAg и ВИЧ (основание — инструкция «О порядке предоперационной заготовки аутологичной крови и ее компонентов», утв. Приказом Министерства здравоохранения Республики Беларусь № 981 от 03.09.2012). Дополнительные лабораторные и клинико-инструментальные обследования выполняются по показаниям.

Получение клеточных трансплантатов

1. Забор и транспортировка костного мозга

30—40 мл пунктата костного мозга (ПКМ) забирают в пробирки (объемом 50 мл) с антикоагулянтом гепарином из расчета 50 единиц гепарина на 1 мл пунктата. В течение 1 ч пробирки транспортируют в специализированную лабораторию в термоконтейнере для перевозки биологического материала.

2. Выделение и наращивание МСК

- 2.1. Содержимое пробирок тщательно перемешивают и отбирают 0,1 мл для подсчета ядросодержащих клеток (ЯСК; по методу подсчета лейкоцитов в камере Горяева).
- 2.2. Пунктат разводят фосфатно-солевым буферным раствором (ФСБ) в соотношении 1:1 и наслаивают на градиент плотности в пропорции 1 часть градиента плотности (гистопак) и 2 части ПКМ; пробирки центрифугируют в режиме 400 g (1500 об./мин) 30 мин; после разделения клеток пипеткой отбирают мононуклеарную фракцию на границе раздела гистопака и плазмы, переносят в пробирки (объемом 50 мл), добавляют 30–40 мл ФСБ с 1% сыворотки АВ (IV) и отмывают в режиме 400 g 10 мин; повторяют отмывание в указанном режиме; полученный осадок клеток ресуспендируют в 10 мл полной питательной среды

(ППС) и отбирают 0,1 мл суспензии для подсчета мононуклеарных клеток (МНК). Подсчет МНК, как и ядросодержащих клеток, проводят по методу подсчета лейкоцитов в камере Горяева.

- 2.3. Отбирают часть суспензии, содержащей 0.5×10^6 и 1.0×10^6 клеток в пробирки (объемом 15 мл) с 10 мл ППС, перемешивают, переносят в культуральные чашки и помещают в CO_2 -инкубатор на 9–14 дней без смены среды для определения числа колониеобразующих единиц фибробластов (КОЕ-Ф тест).
- 2.4. Основную часть МНК, для получения первичной культуры, вносят во флаконы Т175 в посевной концентрации 0.2×10^6 /см $2-0.6 \times 10^6$ /см 2 в 30 мл ППС и помещают в СО₂-инкубатор. Через 48 ч для удаления неприкрепившихся клеток из флаконов отбирают ППС, однократно промывают адгезионную поверхность 20 мл ФСБ и вносят 30 мл свежей ППС. Клетки наращивают на протяжении 9-14 дней со сменой среды каждые 3 дня. После достижения первичной культурой достаточной плотности роста клетки снимают, подсчитывают и высевают в новые культуральные флаконы: из флаконов удаляют ППС, промывают адгезионную поверхность 20 мл ФСБ и вносят по 4 мл 0,25% раствора трипсина-ЭДТА на 3-7 мин; после открепления клеток, трипсин нейтрализуют половинным объемом сыворотки AB (IV), добавляют 6 мл ФСБ, клетки ресуспендируют и отмывают в центрифужных пробирках в режиме 400 g 10 мин. Клетки из всех флаконов объединяют в одной пробирке, разводят питательной средой, подсчитывают и высевают в культуральные флаконы Т175 в количестве 500-700 тыс. на флакон в 30 мл ППС и посевной концентрации 3-4 тыс./см² (первый пассаж). Для получения достаточного количества клеток культуру наращивают на протяжении 2-3 пассажей со сменой среды каждые 3 дня.

В процессе культивирования оценивают морфологию клеток, определяют плотность роста, контролируют стерильность.

2.4.1. Количество флаконов для контроля стерильности определяют по формуле:

$$0.4 \times \sqrt{n}$$

где n — число флаконов на данном этапе работы. Из флаконов отбирают культуральную жидкость общим объемом не менее 10 мл и передают в баклабораторию.

После наращивания клеточной массы часть МСК (из 4-х флаконов Т175) переводят на нейроиндукционную среду, а основную массу интактных МСК используют для внутривенного введения пациенту.

2.5. Перевод клеточной культуры на нейроиндукционную среду проводят следующим образом: из флаконов удаляют ППС, промывают адгезионную поверхность 20 мл ФСБ и вносят дифференцировочную среду в количестве 30 мл на флакон; культуру помещают в CO_2 -инкубатор на 7 дней со сменой среды; в процессе дифференцировки оценивают морфологию клеток, контролируют стерильность. Через 7 дней нейроиндуцированные МСК снимают для введения в спинномозговую жидкость методом люмбальной пункции.

3. Подготовка клеточных трансплантатов

Как указано в пп. 2.4 и 2.5, интактные МСК вводят внутривенно, а нейроиндуцировнные эндолюмбально.

Для подготовки клеточных трансплантатов применяют раствор натрия хлорида 0,9% для инфузий (физиологический раствор), аутологичную сыворотку и 0,25% раствор трипсина-ЭДТА.

Из флаконов удаляют ППС, промывают адгезионную поверхность 20 мл физиологического раствора, вносят по 4 мл 0,25% раствора трипсин-ЭДТА на 3–7 мин при 37°С. После открепления клеток во флаконы добавляют по 8 мл физиологического раствора с 1% аутологичной сыворотки, клетки ресуспендируют и отмывают в центрифужных пробирках при 400 g 10 мин; после удаления надосадка повторяют отмывание в указанном выше режиме.

Затем клетки объединяют в одной пробирке в растворе натрия хлорида 0,9% для инфузий с 5% аутологичной сыворотки. Объем суспензии интактных МСК для внутривенного введения составляет 20 мл, а нейроиндуцированных МСК для эндолюмбального введения — 5 мл.

Далее проводят контроль качества полученного клеточного материала. Отбирают часть клеток для:

- подсчета количества и оценки жизнеспособности;
- определения экспрессии поверхностных маркеров CD90, CD105, CD45, CD34 методом проточной цитометрии;
- контроля нейроиндукции методом молекулярно-генетического анализа (ПЦР);
- контроля стерильности (МСК в 10 мл раствора натрия хлорида 0,9 % для инфузий с 5% аутологичной сыворотки передают в баклабораторию).

Кроме того, часть клеток замораживают и закладывают на хранение (контрольный образец).

Затем после проведения контрольного отбора объем основной части суспензии, предназначенной для внутривенного введения, доводят раствором натрия хлорида 0,9% для инфузий с 5% аутологичной сыворотки до 20 мл, а для эндолюмбального введения — до 5 мл (клеточный трансплантат).

3.1. Критерии качества трансплантата

Трансплантат представляет собой суспензию МСК 2 - 3 пассажей в растворе натрия хлорида изотоническом 0.9% для инфузий с добавлением 5% аутологичной сыворотки; жизнеспособность клеток не менее 95%, фенотип по маркерам CD $90^+>95\%$, CD $105^+>95\%$, CD $34^+<5\%$, CD $45^+<5\%$; трансплантат стерилен (отсутствуют аэробные и анаэробные бактерии, грибы).

Объем трансплантата неиндуцированных МСК для внутривенного введения 20 мл, содержание клеток — $0.5-1.5\times10^6/\text{кг}$ веса пациента $(35\times10^6-120\times10^6)$.

Объем трансплантата нейроиндуцированных МСК для введения в спинномозговую жидкость методом люмбальной пункции 5 мл, содержание клеток — $5.0 \times 10^6 - 9.0 \times x \cdot 10^6$.

Емкости с трансплантатами снабжают этикетками с указанием организации производителя, ФИО пациента, названия трансплантата, его объема, количества клеток, времени и даты производства, способа введения, условий хранения и

срока годности. К трансплантату прилагается аналитический паспорт.

Трансплантаты хранят и транспортируют в термоконтейнере при температуре от +4 до +10°C. Время от момента суспендирования клеток в физиологическом растворе с 5% аутологичной сыворотки до клинического применения не должно превышать 2 ч.

4. Получение аутологичной сыворотки

20 мл периферической крови пациента забирают в пробирки без антикоагулянта. После свертывания крови пробирки центрифугируют 20 мин при 3000 об/мин. Сыворотку отбирают и центрифугируют в указанном выше режиме для удаления форменных элементов, затем фильтруют через фильтры с размером пор 0,45 и 0,2 мкм, маркируют с указанием ФИО пациента и даты заготовки и замораживают при -20°С. Перед использованием сыворотку размораживают и для удаления возможных криопреципитатов фильтруют через фильтры с размером 0,2 мкм.

5. Трансплантация аутологичных МСК

Трансплантация аутологичных МСК проводится в стационарных условиях в 2 этапа с интервалом 3–7 дней путем внутривенного и эндолюмбального введениия в условиях процедурного кабинета неврологического отделения или отделения анестезиологии и реанимации.

1 этап: внутривенная инфузия интактных МСК в дозе $0.5-1.5\times10^6$ /кг веса пациента ($35-120\times10^6$) в 20 мл физиологического раствора с 5% аутологичной сыворотки осуществляется при постановке внутрисосудистого катетера 18G и с использованием шприцевого дозатора со скоростью инфузии 60 мл/ч.

эндолюмбальная инфузия нейроиндуцированных MCK. асептических условиях пациента укладывают на кушетку на бок, сгибая голову и ноги (в тазобедренных и коленных суставах); спина его располагается вертикально, под прямым углом к кушетке. На уровне промежутка L3–L4 после обработки кожи антисептиком проводят анестезию места предполагаемой 0,5% раствором новокаина. Перед использованием пункции ресуспендируют, набирают в шприц 5 мл суспензии, содержащей 5–9×10⁶ клеток. Из стерильной упаковки извлекают одноразовую пункционную иглу и производят прокол. После попадания в субарахноидальное пространство извлекают мандрен и производят забор 3 мл спинномозговой жидкости для анализов. Канюлю шприца вставляют в павильон пункционной иглы и медленно, в течение 1 минуты, вводят суспензию МСК. После окончания манипуляции иглу извлекают, пациента транспортируют в палату на каталке в положении лежа и помещают на кровать, укладывают в положение лежа на животе, если позволяет состояние — с приподнятым ножным концом под углом 10-20°. В таком положении пациент находится 2-3 ч. В последующем он выписывается из стационара через 3-7 дней в переносимости процедуры. Периодичность OT осмотров через 1 мес., затем каждые 3 мес. после трансплантации МСК. При необходимости повторяют: МРТ головного и/или спинного мозга, анализ спинномозговой жидкости, общеклинические анализы.

ПЕРЕЧЕНЬ ВОЗМОЖНЫХ ОСЛОЖНЕНИЙ ИЛИ ОШИБОК ПРИ ВЫПОЛНЕНИИ И ПУТИ ИХ УСТРАНЕНИЯ

1. Транзиторная гипертермия при внутривенном введении АМСК.

Лечение: назначение антипиретиков (парацетамол, литическая смесь: метамизол натрия 50% 2 мл; папаверина гидрохлорид 2% 2 мл; димедрол в ампулах 1% 1 мл внутримышечно, однократно).

2. Постпункционный синдром с развитием головной боли, которая возникает обычно на 2-й день после пункции, носит характер постуральной, возникает при попытке пациента встать и исчезает в горизонтальном положении. Головной боли иногда сопутствуют тошнота, вегетативная лабильность, легкие менингеальные знаки.

Лечение: назначение постельного режима, обильного питья (3—4 л/сут). При более выраженных симптомах назначают анальгетики, транквилизаторы, при артериальной гипотонии показано подкожное введение кофеина бензоата 1 мл 10%, внутривенно изотонический раствор натрия хлорида.